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SUMMARY

Some effects of fuselage flexibility on longitudinal stability
and control of a large airplane are deijerminedby application of a
semirigid analytical technique. The dynamic characteristicsare examined
by studying the period and damping of the short-period longitudinal modes
of oscillation of the fuselage and airplane. The static characteristics
are examined by studying the longitudinal stability margins and the
elevator-controldeflections required for balance in straight or steady
maneuvering flight.

The consideration of fuselage flexibility in the airplane stutied
appears to introduce no serious problems insofar as dynamic longitudinal
stability in the subcritical speed range is ’concerned. It is indicated

f> that, if desired, future designs may incorporate somewhat more flexible
fuselages than that studied smd still have dynamic longitudinal charac-
teristics approximately equal to those predictedby quasi-static theory

:, and roughly equivalent to those predicted by rigid-body theory.

The changes in static ckracteristics caused by increased fuselage
flexibility appear, in general, as decreased straight-flightsmd increased
maneuvering-flightstability margins and increased elevator-control deflec-
tions required for balance. The need for a means of longitudinalbalance
in steady maneuvering flight other than elevator or horizontal-tail
deflection is indicated if flight is desired at low altitude and high
speed with airplanes that have fuselage natural frequencies much below
those representative of current design practice.

.

INTRODUCTION

Seversd.
ponents that

modern high-speed airplsnes incorporate structural com-
are relatively more flexible than those previously used.

‘, There has been concern that the increased flexibility might appreciably
modify the dynamic stability characteristicsas predicted by rigid-
airplane theory. (See, for example, ref. 1.) Particular concern was

,.
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2 NACA TN 3543

felt for the possibility of interaction between structural and stability c1
vibratory modes because the natural frequencies of the major structural
components are approaching the natural frequencies of the short-period
stability mode.

The problem of the effect of wing flexibility on dynamic longitu-
dinal stability of large airplanes has been treated analytically in
the subcritical speed range by a simplified semirigid method in refer-
ence 2. In the present paper, the effects of fuselage flexibility are
studied by the same method for the same class of airplanes. The major
aspects of this study include

(1) Dynsmic stability as described by period and’@ping of the
fuselage and airplane longitudinalmodes of.oscillation

(2) Static stability as described by longitudinal stability margins

(3) static longitudinal control as described by elevator-control
deflections required for steady straight or maneuvering flight

Implications of the results with regard to the design of future air-
planes of the class considered are discussed.

SYMBOZS

CF fuselage force coefficient,positive upward

CL lift .coefficient

c%
straight-flightbalance lift coefficient

cm pitching-mome”ntcoefficient,positive nose qward

c%
airplane pitching-mmnent coefficient at zero lift

E mean aerodynamic chord, ft

D differential operator,
()

d/d @
E

E energy, ft-lb

EI bending stiffness, lb-ft2
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MA’

airplane and altitude varies as the square of qe

- acceleration due to gravity, 32.2 ft/see*

nondimensional bending deflection at tail, ht/6

deflection due to bending, positive downward, ft

shape of fuselage deflection curve which for this paper is
assumed to be (+%)*

moment of inertia about Y-axis, ft-1.b-sec2

longitudinal stability margin, fraction of E, positive
when stable

r

~Y ftradius of gyration about Y-axis, MT

lift, positive upward

tail length, ft

mass, slugs

r
“h

mh(x)dx, slugs

J’‘nM2 = mh(x)x ax, Slug-ft
Xt

M3 ‘~m[h(x)]2dx,ShgS

M. free-stresm Mach number

m mass per running foot, slugs/ft

Q generalized force or moment

.

.
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dQgener~izedc oordinate; or pitching VelOcitYj ~

free-stresm dynamic

wing area, sq ft

time, sec

true airspeed, fps

pressure, lb/sq ft

stability coordinate axes (defined in fig. 1) ‘

earth coordinate axes

distances along stability coordinate axes, ft

distances along earth coordinate axes, ft

nondimensional distance between 0.25E and center of gravity,
E lengths, positive when center of gravity is rearward
Of o.25E

angie of attack, positive nose upward, radians

elevator deflection, positive when trailing edge iS
downward, radians

downwash

angle of

airplane

density,

elevator

fuselage

angle, radians

pitch, positive nose upward> ra~~s

relative-density coefficient, MA/P~~

slugs/cu ft

effectiveness.factor,

I

CL5 CL
e %

natural frequency, cps

( )
2 1/2

M22 Ml
effective fuselage frequency 2Wfl---—

193 ‘PA ‘

c1

f

radians/see
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Subscripts:

5

A

Cg

e

F

f

ff

fr

k

n

P

R

SF

SR

TF

TR

t

typ

w

x

entire airplane

center of gravity

effective

flexible

fuselage

fuselage forward of center of gravity .

fuselage rear of center of gravity

kinetic

nose of airplane

potential

rigid

straight flight, flexible fuselage

straight flight, rigid fuselage

turning flight, flexible fuselage

turning flight, rigid fuselage

tail of airplane

typical current design practice

wing

X. stability axis

Dots are used to indicate differentiationwith respect to the;

for exsmple, & . Q&O

The subscripts a, k,” ~ H; DH, snd be indicate differentia-

tion; for exsmple, with respect to the lift
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refer to
coefficients, except
the entire airplane.
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those designated by suitable subscripts,

ANALYSIS

Considerations

Some effects of fuselage flexibility on the longitudinal character-
istics of a large airplane ere examined by means of the Lagrsagian
formulation of the differentialequations of motion. Three degrees of
freedom are allowed: namely, angle of pitch !3,vertical displacement z,
and fuselage bending h. (See fig. 1.)

Assumptions.- Unless otherwise stated, the following assumptions are

made throughout the paper:

(1) The airplane forward velocity is constant.

(2) All drag forces are negligible.

(3) ml lift forces on the fuselage
coefficients.

are grouped in the wing

(4-)Wing and tail mass and lift forces are concentrated at their
respective qyarter-chordfuselage stations.

(5) T’liwand tail are considered rigid.

(6) me fuselage is perfectiy elastic.

(7’) me fuselage deflects parabolically regardless of applied load
distribution. “

(8) Small classical perturbations are allowed.

tion

This

Ugrangian formulation.- The Lagrangian equation within the assump-

made is

(1)

equation requires only that the energies (both kinetic and potential)
and the generalized forces of the system under study be known.

——-—. ——
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Energies.- Figure 1 shows that for small perturbation the vertical
displacement at any fuselage station is

“f = “cg - X6 + h(x)ht

where

x=x’ z z’= Cose=l

Differentiationwith respect to time yields the vertical velocity

Thus, the kinetic energy oflthe entire airplane is

Ek .J’%*(+)%X
Xt

and the potential energy is

(2)

(3) ,

(4)

(5)

.

where the first integral represents the stored energy due to vertical
position and the second integral, which may be calculated according to
the method of appendix A, represents the stored energy due to the
elastic deformation.

..
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Generalized forces.- The generalized forces are the aerodynamic

forces on the wing and tail which, for small pert~bations) maY be
assumed to act vertically. The forces work when they act through a
distance. Therefore, for a displacement involving all three,degrees
freedom,

of

{
Allork= - Azcg - X#e + [h(x)]#ht) ~ - (Azcg -xtAe +Aht)% (6)

Thus, the generalized forces for each degree of freedom are

~ _ AWork
z .—-=-q-Lt

Az

AWork
Q8=~= x& + xtLt

Qht = ‘~ = ‘F(xlw% - Lt

where the lift on the wing and tail, respectively, are

b ‘ Cqqqo% = CL%%%%

(7)

(8)

(lo)

and

(11)

Expressions for q~ and q-, the angles of attack of the wing and tail

in terms of the three degrees of freedom allowed, are derived in appendix B. ,

———— .- .—
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Four sets
the effects of
the semirigid,

Equations of Motion

of differentialequations of motion were used in describing
fuselage flexibility on longitudi~l stability and control:
rigid, quasi-static, and static-b,alanceequations.

Semirigid forms.- Performing the operation of equation (1) on equa-
tions (2) to (11) and then converting to nondimensional notation (see
ref. 2) gives the semirigid forms of the equations of motion for the three
degrees of freedcm allowed: namely,

vertical force

‘1 +3+ &La+.h$~2pD(cL- (3)+2p—D
MA

+ D@Lq+

HCLH+ DH$%H+ 5eCLbe - C% = O

pitching moment

ky2 2 M2D2H_& *2pYDf3-2M—
MA6 ma- 2 ‘Da - ‘*% -

HCmH - DH%
2 ‘DH %

- aecmb - = o
e

(12) -

.

(13)

and fuselage bending force

D&F

()

Ml

2q
+HCF +~-f-DH~F

H + 6ecF5e -C%q=o (14)
~2 2 DH

.- ..—..—... .. . . . . .. . _———___ ._.—.-.... ... ._ _. —-— —-.——e —--- _______ . . . . .



10 NACA TN 3543

The generalizedmasses (e.g., Ml) in equations (12) to (14) are
recurring constants and are derived and defined in appendix C. The
equations used for,evaluating the aerodynamic coefficients are given in
appendix D.

Rigid forms.- A special case of the equations of motion, the famil-

iar rigid-body case, is found when the fuselage bending is zero. Equa-
tions (12) to (14) then reduce to

vertical force

2pD(a - e)+@L +~~+D&L
2q + 5ecL5e -c

k
=0 (15)

a

and pitching moment

2p
()
:2 D%-dma-Do&mk -DO&

-~e%e-~=o
(16)

Quasi-static solution.- Another solution to the equations of motion
of general interest, called the quasi-static solution, is found when the
effects of velocity and acceleration in bending on the forces in the
system are zero. Equations (12) to (14) then reduce to

vertical force

2pD(a - @+@L+&
2LDa

+ D&L + HC!
.2q%i

+becL-c =()
a be k

(17)

pitching moment

()
‘y2D2fj-~2p ~ %

& -D:
%- 2mk - “mH -~e~ -~=0 (18)

c/ e

—

.

—
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and fuselage bending farce

,

()H CFH+
Ml

~ + beCFb -CLOK=O
V2 e

(19)

Static-balanceform.- Still another form of the semirigid equations
of motion, which describes static balance or trim of an airplane with a
flexible fuselage in steady maneuvering flight, is obtained when the rate
of change of angle of attack and the pitching acceleration as well as the
velocity and acceleration in bending are all set equal to zero. Equa-
tions (12) to (14) then reduce to

vertical force

pitching moment

and fuselage bending force

-H
%

-5C .-Cw.o=cm ’
e We

Ml
— + dF + D~Fq

()

Ml
-2wDf3MA +HC&H+~ +8eCFbe- c~q=o

a V2

(20)

(21)

(22)

Equations (20) to (22) describe the static balance or trim of an
airplane with a flexible fuselage in steady straight flight if all the
terms involving De are deleted.

.— —-———---—--- -—- -—-—--—-——-—- ——. ___ —._ . .. ___________
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Dynamic Longitudinal Stability
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An exponential solution to the equations of motion was assumed. If
such a solution exists, the determinant of the coefficientsmust vanish.
This determinant when written as an equation yields what is commonly
called the characteristic equation of the system. The roots of the
operator D contained in the characteristic equation determine the period
and the the to damp of the various modes of motion in the system under
study if the mode is oscillatory or simply the rate of convergence or
divergence if the mode is nonoscillatory.‘

The foregoing procedure is described in detail in reference 3 and in
other literature and was used herein to determine the dynamic longitudinal
stability characteristics of the semirigid, rigid, and quasi-static air-
plane systems considered.

Static Longitudinal Stability and Control

The effects of fuselage flexibility on the static longitudinal sta-
bility and control are examined by comparing the classic straight-flight
and maneuvering-flight stability margins and elevator angles necessary
for balance for rigid airplanes with those for airplanes in which fuse-
lage bending occurs.

Stability margins.- The straight-flight stability margin is defined

herein as the longitudinal distance expressed as a fraction of the length
of the wing aerodynamic chord between the center of gravity and the point
at which the lift associated with incremental lift coefficient acts;l the ~,

incremental lift coefficient is produced by an infinitesimal change in
steady forward flight speed along a straight and level flight path with
controls fixed in the position required for balance at the particular
initial speed under consideration. When expressed analytically, the .
straight-flight stability margin is

acm/av
Ks.-

ack/av
(23)

The static-balance equations (20) to (22) maybe differentiatedwith
respect to velocity to obtain w~av and &LlaV where the pitching

lIt shouldbe noted that this point is not necessarily a fixed point
on the airframe in the case of a flexible airplane but, rather, is depen-
dent cm center-of-gravity location and stiffness characteristics. et

.

..————
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velocity De may be neglected in level
tion of these values into equation (23)

13

unaccelerated flight. Substitu-
yields the straight-flightsta-

bility margin for an airplane with a flexible fuselage as
—

KSF =
c% -!+

+
C%c%- CLaCFH - cLa$ ( c& +

1+ J yo
C%IC%

G CLO- CLGCFH- CLa—

(24)

which, for infinite stiffness (G = w), reduces to the well-known rigid-
body straight-flight stability margin

c%KSR=-m
a

(25)

The maneuvering-flight stability margin is herein defined as the
longitudinal distance expressed as a fraction of the length of the wing
mean aerodynamic chord between the center of gravity and the point at
which the lift associated with incremental lift coefficient acts; the
incremental lift coefficient is produced by an infinitesimal change in
steady angle of attack at constant forward velocity with controls fixed
in the position required for either the initial straight or the initial
steady curvilinear flight path at the flight speed under consideration.
When expressed analytically, the maneuvering-flight stability margin is

acmpa

‘“-T (26)

The static-balance equations (20) to (22) maybe differentiatedwith
respect to angle of attack a to determine the solution of the maneuvering-
flight stability margin KT as defined-by equation (26). For an airplane
with a flexible fuselage, ~ becomes

- .. ... ... —-..—.___....___+_ __ +_-___ _+___ ..__ - .—. .—.-.———.



14 NACA TN 3543

(‘J cLacmH ) - cFacmH + Cm CF + Cm Q

- C%c%~=MA aH a V2

CL#Fa - CLaCFH - cLa &

(27)

(2Pc%cFa - cLacFH

which, for ifiinite stiffness (G

‘cL&
a Tj2)

= ~), reduces to the well-known rigid-

body &aneuvering-flight stability margin

(28)

The stability margins presented herein for airplanes with flexible
fuselages represent real stability rather than apparent stability which
normally is measured directly in flight tests from the variation of
elevator angle with speed or acceleration. In this connection it should

be noted-that, for an airplane with a flexible fuselage, some of the
change in elevator angle needed to change speed or acceleration is
absorbed by fuselage deflection so that the elevator deflectionmeasured
in flight tests ctiotj in &neralj be used as a measwe of real stability”

Elevator-control characteristicsin straight and steady maneuveri~

flight.- The static-balanceequations (20) to (22) maybe solved for

elevator
velocity

angle necessary for balance in level lg flight where the pitching
De is O. TINE, for an airplane with a flexible fuselage,

[(Ml )

G c
— CLaCmH - CmacLH - cFacmH + C~CFH + cma~ LoMA

( )

‘t GCL5 Cma - CL ‘—
e aEV2

(% )%3C CFa - CLaCFH - CLa#
(29)
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.

which, for infinite stiffness (G = m), reduces to

15

(30)

The elevator-angle increment necessary to achieve steady flight
different from lg is obtained from the static-balanceequations (20) to
(22) for De ~ O with all 1 g terms neglected. !l?hus,for an airplane
with a flexible fuselage,

[(Ml ) 1“LacmH - cmac~ - cFacmH+ Cm CF + Cm ~ 2@8MA
Abe~ =

aH a V2

( )

‘t GCL8 Cm - CL —
ea a=V2

( )‘t GCL Cma-CL ——8e a~vz

which, for infinite stiffness (G . m), reduces to

C 2pD13-
)

- g%ck
‘aA8e~ =

( )

2t
CL Cm-CLT

be a -ac

(31)

(32)

It should be noted that any discussion pertinent to the effects of
zero-lift pitching moment C

%
on static stability or control is based

on the assumption that the wing and tail are rigid.

—.- -. -—-...-—. - .—. . ... .. . ____ ____ __________ -----——— ..-. .—_. _—___ .—. —_..
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.

NUMERICAL CONSTANTS

Several constantswere chosen to identify
current large airplane:

the study with a typical

IYA z 1.12 x 106 lb-ft-sec2 c~+ = 4.927 per radisn

CL = 0.802 per radian
at

–=w+f

(based on wing area) T = 0.5 ~ = 0.45

~ =2.72 CPS

The dimensions and

E = 13 ft - ~ = 1,428 S~ ft

mass distribution shown in appendix C were
selected such that (1) the moment of inertia of the assumed airplane
approximated 1.12 x 106 lb-ft-sec2 over the center-of-gravityrange
investigated (0.25E to 0.544E), and (2) the mass distributionwas
describable analytically. This second criterion reduced the evaluation
of the mass integrals from a tedious graphical method to one in which
the values are determinedly expressions obtained from simple analyti-
cal integrations. (See appendix C.)

RESUIWS AND DISCUSSION

The effect of fuselage flexibility on the characteristicsof a
bomber airplane is discussed with regard to

(1) Dynamic stability as described by period and damping of the
fuselage and airplane longitudinalmodes of oscillation

(2) Static stability as

(3) Static longitudinal
deflections needed in steady

described by longitudinal stability margins

control as described by elevator-controi
straight or maneuvering flight

Period and Dsmping

Aerodynamic coefficients,mass distributions,and a range of center-
of-gravity positions were chosen to represent a current high-speed bomber M



airplane. These values, shown in table 1, were substituted into equa-
tions (12) to (19) to determine period and damping of the airplane and
fuselage modes of oscillation at altitudes of 8,OOO and 30,000 feet.
(See ref. 3 for the method.) The results are summarized in figure 2
over the entire possible fuselage natural-frequency range at a Mach
number of 0.7. Figure 3 sumnarizes the period and damping of the airplane
mode as a function of dynamic pressure for a center-of-gravity location
at o.25E for four representative fuselage natural frequencies. The fre-
quencies selected were (1) ~ = cu or rigid body, (2) ~ = 2.72 CpS

‘&p
or typical, current bomber practice, (3) ~ = 1.36 cps or-~ne-half the

frequency of uf
ty-p‘

and (4) ~ = O or completely flexible body.

Rigid-body solution.- The rigid-body characteristics as obtained from

equations (15) and (16) may be identified in the figures as those at
q... In figure 2, the center-of-gravity location appears to have little

effect on the time to damp but causes large changes in the period of
oscillation. The increase in period with rearward movement of the center
of gravity is caused by the decrease in restoring pitching moments asso-
ciated with the reduced stability margins. When the center of gravity is
at the static neutral point (0.544E), the motion consists of two aperiodic
modes, both of which have positive damping.

Airplane mode of the semirigid body.- The airplane short-period mode
of oscillation appears to have reduced datnpingas the fuselage becomes
more flexible. This is probably caused by the reduced tail rotary damping
which becomes zero at ~ = O. However, the airplane mode is still damped

at mf = O because the vertical motion of the wing and fuselage supplies

dsmping of the plunging motion involved in the short-period oscillation.
Because of the assumptions made in the analysis, the wing motion contri-
butes no rotary damping when the center of gravity is at 0.256 and ~ = O

but, as the center of gravity moves rearward, some rotary damping due to
the wing is probably introduced and may account for the increased damping
shown by figure 2.

The decrease in period of the airplane mode with increasing fuselage
flexibility is believed to be due to an apparent forward movement of the
effective center of gravity as the fuselage becomes more flexible. When
the fuselage becomes completely flexible, the airplane probably tends to
behave like two “tailless” airplanes hinged together flying in tandem.
Each tailless airplane of the combination would have a relatively large
stability margin and much smaller moment of inertia than the original
airplane. It might be expected that the airplane mode characteristics
would be determined mostly by the largest and heaviest tailless airplane,
which would consist of most of the fuselage and the wing of the original
conventional airplane.

-—-—- ———-- -—-—--- .--. —-—— ——. —.... .——.. _.. ._ —...__– ___ ___ . _
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Fuselage mode of the semirigid body.- Inclusion of a third degree
of freedom, that of fuselage flexibility, introduces a new mode of @cil-
lation. This mode represents the motion the flexible fuselage would
assume. Although not shown in figure 2, the period of the rigid fuse-
lage (~ = ~) is zero because the structural restoring forces are infinite.

As the fuselage natural frequency ~ decreases, the structural restoring

forces decrease and disappear at ~ = O. Existence of a fuselage oscil-

lation at wf = O (see fig. 2) therefore indicates that a restoring force

still exists that may be attributed to the air forces present.

Also, although not shown in figure 2, the time for the fuselage
oscillation to damp to 0.1 amplitude for ~ = w would be infinite because

structural damping is not considered, and the effect of air damping would
be negligible in comparison with the infi~te structural restoring forces.
As ~ decreases, air damping becomes important and causes a gradual

increase in damping as shown in figure 2. At ~ = O, the damping as well

as the period of the fuselage oscillation is determined entirely by the
air forces.

\

Quasi-static solution.- Characteristics based on equations (17) to

(19), wherein the effects of velocity and acceleration due to bending on
the forces of the system are neglected, are much more readily obtained
than the semirigid solutions since the characteristic equation is reduced
from the fourth to the second order. Agreement between the two solutions
appears to be excellent (see fig. 2) except for exceedingly low fuselage
natural frequencies for which the quasi-staticmethod predicts-too much
damping.

Effect of altitude.- The rigid-body characteristicsindicate that

both the period and the time to damp to 0.1 amplitude increase with alti-
tude at constant Mach number (fig. 2). This increase is due to the
increased ratio between the airplane mass forces and the aerodynamic
restoring and damping forces which is brought about by a reduction in
dynsmic pressure at the higher altitudes.

The period of oscillation is essentially independent of altitude at
any given dynamic pressure (fig. 3). However, the time to damp to 0.1
amplitude at a given dynamic pressure increases w-ithaltitude because the
increase in true speed leads to smaller tail and wing angles of attack
because of pitching velocity and, hence, smaller rotary damping moments.
The inclusion of flexibility does not seem to alter these basic trends.

Significance of flexibility.- It is apparent from either figure 2 or

———

figure 3 that fuselage flexibilities associated with natural frequencies
above the order of 1 cps do not markedly change the period of damping from. .
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that expected with a rigid-fuselage. Thus, within the frsmework of the
present analysis, designers may possibly incorporate fuselages with
appreciably lower natural frequencies than that of the typical fuselage
chosen (2.72 cps) without great concern as to the adverse effects on the

_ic longitudi~l stability characteristics of the proposed airplane.

However, when the period of the short-period oscillation approaches .
that of the fuselage mode which occurs in flight as ~~0, there is some

evidence of adverse interaction between structural and stability modes.
This adverse interaction is indicatedby the rapid increase in time to
damp to 0.1 amplitude as ~eO shown by the results obtained with the

semirigid method. It should be noted that the quasi-static method, which
does not admit the existence of a fuselage oscillation, does not show a
corresponding rapid increase in time to damp to 0.1 amplitude as ~~0.

The aerodynamic restoring forces which act on an airplane, as
pointed out previously, are indicated to be sufficient to increase the
frequency of the fuselage mode in flight so that the latter frequency
is always higher than either the fuselage ground structural frequency
or the airplane-stability natural frequency. Therefore, the probability
of instability associated with proxtiity of the frequencies of the fuse-
lage and airplane modes is minimized; in the present case, indeed, there
was no indication of instability due to interaction between the two
modes.

Longitudinal Stability Margins

Straight- and maneuvering-flight stability margins were calculated
according to equations (24) and (27) and are presented in figures 4 and
5, respectively. The results are given as the ratio of the stability
margin of an airplane flying at a Mach number of 0.7 at 8,OOO and
30,000 feet with a flexible fuselage to the stability margin of this
airplane operating hder identical conditions but with a rigid body.

Straight flight.- The straight-flight stability margin of an air-
plane that has zero pitching moment at zero lift

(% ‘ 0, ‘s ‘educed
,as fuselage flexibility is increased and, in fact,,becomes zero for
an airplane with an infinitely flexible fuselage. (See fig. 4.) Center-
of-gravity location over the range investigated has little if any effect
on the stability-margin ratio at a given fuselage frequency.

However, the situation is markedly changed
pitching moment about the wing quarter chord’at

when
zero

there is a finite

‘ift (MO+ 0)”

—..—. --——.-—-—-.—— .—— —.. ..—.— —___ ._.. ... ... . __ _



20

For a value of
%

given by

NACA TN 3543

the stability margin for a flexible fuselage remains constant over the
entire range of flexibility from an infinitely rigid to an infinitely
flexible body. Any value of c% above this shows an increased stabil-

ity margin with increasing flexibility, and, .conversely~anY value below
this shows a decrease in stability margin with increased flexibility.

The center-of-gravity location has an effect on the degrees of sta-
bility increase or decrease when c% + o. When the center of gravity is

at the rigid-airplane neutral point, the ratio of stability margins is,
of course, infinite (either positively or negatively depending on the
sign of C%) with respect to the rigid-body margin. At more forward

center-of-gravitylocations, the ratio of s%bility ~rgins approaches
the values for ~=0. Therefore, it is seen that the importance of

a given value of & isinversely proportional totheititial rigid-

airplane stability margin.

Increasing altitude at constant Mach number reduces the effects of
flexibility on the static margins for any airplane configuration. This
effect is believed to be solely due to the relative reduction in air
forces compared with the structural forces because of the reduced dynamic
pressure at any constant Mach nwiber that occurs with increasing altitude.

Maneuvering flight.- As the fuselage becomes flexible (~-+0), the

maneuvering-flight stability margin shows a marked increase over the
rigid-body values. Although not readily seen from figure 5, the increased
margins amount to about 20 percent chord over the center-of-gravityrange
investigated at ~ = O. The increase in maneuvering-flight stability

margin ratio with increased altitude probably stems from the reduction in
rigid-airplane stability margin which nonaally occurs with increasing
altitude and is associated with reduced damping in pitch. Because the
turning-flight stability margins involve no change in speed, the zero-
lift pitching-moment coefficient ~. has no effect on these margins even

when flexibility is considered.

—.
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Significance of flexibility.- The conclusion often reached is that

increasing the flexibility of a fuselage will always result in decreased
stability margins because of the tendency of the tail to stream with the
relative wind and thereby produce less lift than the same tail on a
rigid fuselage. Such an effect is apparently predominant when straight-
flight stability margins are considered. However, although such a
streaming tendency exists in steady maneuvering flight, the present analy-
sis indicates that the effect of normal acceleration on the distributed
fuselage mass for airplanes with conceptional tails causes both ends of
the fuselage to deflect downward sufficiently such that the tailof the
flexible airplane produces more lift than that of the rigid airplane.
The resulting increase in tail lift draws the centroid of the total air-
plane lift rearward which is synonymous with increased stability margin.
Thus, although the straight-flight stability margin goes to zero

(
for ~

)
= O as the fuselage flexibility is increased, the maneuvering-

0
flight stability margin is increased.

For flexible airplanes, the problem of straight-flight stability
margin may be minimized through careful design practice. Advantage can
be taken of the situation when

If the wing sections are selected such that this equation is obeyed at
the design speed and altitude condition, flexibility will have no effect
and the airplane will have the same stability it would have if it had a
rigid fuselage. As the airplane operates off the design-speed conditions,
the effects of fuselage flexibility become important.

Except for large negative values of C
%’

which in most cases can be

avoided in airplane design, the effects of the inclusion of fuselage-
flexibility effects on current airplane design uy

( typ )
= 2.72 CpS tith

regard to stability margins are either negligib~e or-beneficial
straight and maneuvering flight. Indeed, from figures 4 and 5,
may expect to use fuselage natural frequencies appreciably less
the current practice without expecting very large differences.

‘inboth
designers
than is

Elevator-Control Motion.

The elevator angles necessary for balance in either straight or
maneuvering flight were calculated according to equations (29) and (31)

-. —. —...... . ... . .. . .. ..... —________-—.. ___ . .. ____
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and are presented in
straight flight, the
absolute values. In
increments necessary

NACATN 3543

figures 6 and 7, respectively. In the case of
elevator angles necessary for balance are given as
the case of maneuvering flight, elevator-angle
for balance at any given normal acceleration dif-

ferent from lg are given as the ratio of the elevator-angle increment
required for an airplane with a flexible fuselage to the elevator-angle
increment required for an airplane with a rigid body. In every case,
the airplane is flying at a Mach number of 0.7 andat either 8,000- or
30,000-foot altitudes.

Rigid-body control.- ~e elevator angles at ~ = m in figure 6

represent those expected from a rigid airplane of the assumed geometry.
The static stick-fixed neutral point occurs when be = O for CW = O

which is at the center-of-gravitylocation of 0.544~. In this condition,
a positive lift necesssry for balance is generated on the entire tail
when the rigid airplane is at an angle of attack. As the center of
gravity moves forward, less tail lift is required for balance. This is
achieved by increasing up-elevator (negative) angle as may be seen in
figure 6. When the center of gravity reaches the wing quarter-chord
position, the up-elevator angle required is just sufficient to eliminate
completely all lift on the horizontal tail for the configurationwhich
has no zero-lift pitching moments or distributed fuselage lift. Of
course, positive

c%
causes a down-elevator angle necessary for balance

and negative
%

causes an up-elevator angle necessary for balance with

respect to that required when
c% = 0“”

Straight-flight control of flexible fuselage.- The elevator angle
necessary for balance in straight flight for C

%
= O becomes increasingly

negative (trailing edge up) as fuselage flexibility is increased and, in
fact, becomes infinite for an airplane with an infinitely flexible fuse-
lage. (See fig. 6.) However, when zero-lift pitching moments are con-
sidered, it can be shown that fuselage flexibility has no effect on the
elevator angle necessary for balance when

c =
‘o

[(Ml— cLacmH -
MA 1+cmcF-CFCmCLCinch)aH ccHO

cLucF- - cL_cFu

More positive values of C
%

require an increasing positive elevator

angle until as ~~0 the elevator angle necessary for balance becomes

infinite. Conversely, for more negative values Of
c%’

the elevator

angle necessary for balance becomes infinite in the opposite direction.
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Increasing altitude requires increased up-elevator angles necessary
for balance. This is probably due primarily to the reduced dynamic pres-
sure which requires that the airplane be flown at higher lift coefficients
at high altitudes.

.

Maneuvering-flight control of flexible fuselage.- The maneuvering-

flight elevator-angle-incrementratio necessary for balance for an
airplane with a flexible fuselage increases as fuselage flexibility is
increased and becomes infinite for an airplane with an infinitely flexible
fuselage. (See fig. 7.)

Significance of flexibility.- The deflection curve which a flexible
fuselage assumes depends on the distribution of applied aerodynamic loads,
the mass distribution, and the stiffness distribution. In normal flight,
that is, with the center of gravity at or near 0.25E, the air load
required on the horizontal tail for balance in straight flight is zero if

c% = 0“
Under these conditions, the fuselage may be thought of as a long

flexible beam having distributed mass which is supported by a single con-
centrated lift force supplied somewhere near the middle of the beam. The
result is that both ends of the fuselage will droop, and it is apparent
that increasing up elevator will be required to preserve balance as the
fuselage increases in flexibility. When the center of gravity is moved
rearward from 0.25E, up tail loads are needed for balance. If the up
tail load for balance exceeds the weight of the tail assembly (which
occurs for the airplane studied when the center of gravity is about 0.32~),
the fuselage deflection curve begins to have an inflection point at the
rear end which moves forward with further rearward movement of the center
of gravity. Therefore, the assumption of a simple deflection curve such
as the parabola becomes less satisfactory as the center of g-ravity
approaches the neutral point. However, it is apparent from the foregoing
discussion that the assumption of a parabolic deflection curve is at least
qualitatively realistic and should allow some idea to be gained in regard
to the onset of serious trim problems.

The increases in elevator angle compared with those required for a
rigid body (~ = ~) are not marked for the design studied ~

(
s 2.72 CPS

typ )
for normal center-of-gravity locations (approximately0.25~) for the air-
plane in level flight at both 8,OOO and 30,000 feet and also for the air-
plane at 30,000 feet in maneuvering flight. In fact, from figures 6
and 7 it appears that designers can reduce appreciably current fuselage
structural frequencies before any serious elevator-controlbalance prob-
lems will be expected to occur. However, the elevator-controlbalance
problem in low-altitude high-speed flight (~ ? 0.70) appears in figure 7
to be becoming serious for current airplanes in maneuvering flight and
will probably become intolerable for more flexible designs. If high-speed
flight becomes necessary at low altitudes for airplanes having fuselage

-- .—--- —-.—.. —.-. . -_.. .. . .... .._ . ......__ ____ R__ _. ___ _ __
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natural frequencies much below those of present-day practice, some means
other than elevator or stabilizer control may become necessary to balance
the ,airplanelongitudinallyin maneuvering flight.

.

It is interesting to note from figure 6 or figure 7 that the eleva-
tor is, in general, completely incapable of balancing the airplane with a
completely flexible fuselage in either straight or turning flight. Thus,
any discussions of static stability for fuselage stiffness very close to
zero are primsxily of academic interest.

. .

~CONCLUDING REMARKS

.

The considerationof fuselage flexibility in a current large high-
speed airplane design appears to introduce no serious problems insofar
as dynzc longitudinal stability in the sticritical speed range is con-
cerned. It is indicated that, if desired, futuredesigns may incorporate
fuselages with natursl.frequencies appreciably less than that studied and
still have dynamic longitudinal.characteristicsapproximately equal to
those predictedby quasi-static theory and roughly equivalent to those
predictedby rigid-body theory. ‘

The aerodynamic restoring forces which act on the airplane are
sufficient to increase the frequency of the fuselage oscillatorymode in
flight so that the latter frequency is always higher than either the
fuselage ground structural frequency of the airplane-stabilitynatural
frequency. Thus, the occurrence of a resonant condition is avoided.

The changes in static characteristicscaused by increased fuselage
flexibility, in general, appear as decreased straight-flightsnd increased
maneuvering-flight stability margins and increased elevator-control
deflections required for balance. The need for a means of longitudinal
balance in steady maneuvering flight other than elevator or horizontal-
tail deflection is indicated if flight is desired at low altitude and
high speed with airplanes that have fuselage natural frequencies much
below those representative of current design practice.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., August 23, 1955.
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APPENDIX A

CALCULATION OF POTENTIAL ~TRAIN ENERGY

Nodal line

25

The potential strain energy is derived in terms of the maximum
kinetic energy of a harmonically vibrating free-free beam (the fuselage).
Mathematically, this equality can be expressed as maximum potential strain
energy equal to maximum kinetic energy or

.

The problem then is to express

The vertical displacement
may be expressed as

(Al)

Zf in known terms.

and acceleration of any fuselage station

Zf = Zcg - Xe + h(x)% (A2)

—......——.. ______ .. . . -. ---- _
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and

NACA TN 3543

“+ = ;Cg . X6 + h(x)”% (A3)

It is a necessary condition that the external vertical force and pitching
moments of a free-free beam be zero at all times. Hence,

and

.

r%mxtifdx =0 = -tfIy + iiJ142

(A4)

(A5)

LJxt

Solving equations (A4) and (A5) for ~cg and ~, respectively, in terms

of fit yields

. . Ml ..
-—

Zcg = MA h-t

M2 ..
0= @t

I

or, combining equations (A3) and (A6) gives

[

Ml M2.;f
=Rt.—-—-x+h(x)

MA Iy

(A6)

(A7)
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Under the assumption of sinusoidal motion it can be shown easily that

(A8)

,

and

so that equation (A7) becomes

[
zf’%-~-:’+ h(’)

(A9)

(Ale)

Equation (AIO) then is an expression for zf in known terms. Sub-

stitution of equation (AIO) into equation (Al) and simplifying yields the
potential strain energy expressed as

.,

. . .. . ..-— .._ _________ _——— —-- ——--- ---- --——— —.— ..—. .- —.—
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APPENDIX B

DERIVATIONS OF TAIL AND WING ANGLES OF ATTACK

For a rigid airplae, the wi~ angle of attack is

X#
=cL— —

‘R v

and the tail angle of attack is

NACA TN 3’343

(Bl)

(B2)

For the flexible airplane) % %d % ‘e ”motifiedbecause‘f
fuselage bending displacement and.velocity; consequently,

and

%=%+{dp(:q}x=xt+w].=%

For the assumed parabolic fuselage deflection under load,

2

()
h(x) = ~

(B3)

(B4)

(B5)

.

“
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so that

d[h(x)] 2X “=—
dx %2

Substitution of equations (Bl) into (B3) and (B2) into (B4) and
nondimensionalizinggives, respectively,

.

2+ ~
~=a-~D6

()

%?2-——H+ — DH
Xt % Xt

and

29

(B7)

(B8)

.

Equations (B7) and (B8) are used herein to describe.the angles of
attack of the wing and tail for the several degrees of freedom allowed.

.

,

.—...- . _____ .——-. .- —...-+_________ —.— -—.— —. . . .... . ..— ._,.—__________ ______ _.. ___
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APPENDIX C

DERIVATION OF GENERALIZED

NACA TN 3543

MASSES

The assumed loading for the airplsne under considerationmay be
pictured as

where all distances shown are in feet and

E=13ft

MA = 3,882 slugs (125,ooO lb)

%=1,273 sl~S (41,000 lb)

Mf + Mt = MA - ~ = 2,6o9 sl~s

Mf .

Mt . 621 SILW

Mff + Mfr = 1,988 slugs

.

—.
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and where, for the assumed fuselage geometry and triangular load distri-
bution in slugs,

.

Mff = 1,299 - 870?

The mass per running foot is

~f’= ~f ‘n - ‘

%2

(for X= XntO X=O)

and

~r = 2Mfr ‘xt~ x (for x= Otox=xt)
Xt

for

xn =51.3+ 132

and

xt = -46.5+ 13x

Proceeding to the mass integrals gives

J’%Ml = mh(x)dx
Xt

(cl)

(C2)

(C3)

(C4)

(C5)

—. -.——. ..- ._. —______ ._...__ _
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Combining equations (Cl) to (C5) yields

When the integrations have been

Similarly,

and

performed,

()

x#+Mfr+Mt
+~% —

6

NACA TN 3543

(c6)

(C7)

(c8)

Equations (C7) to (C9) are used to evaluate the mass integrals over the
center-of-gravityrange of the investig’ation.

.
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APPENDIX D

EQUATIONS FOR EVALUATING THE AERODYNAMIC PARAMETERS

The aerodynamic parameters in the general case may be expressed as

‘(n)cLf(n)
= fif(n)cL~ + ‘f(n)cL~ “

f(n)C 5?
‘%f(n)cL~ c

+
%?(n) ‘+ ‘f(n)cL~y

()~
2

‘(n)cFf(n) cL‘%f(n) ~xt
+ ‘f(n)cL~

For example, the airplane lift-curve slope c~~ the d~tig in
1

‘itch Z?%’
and the bending-force coefficient due to velocity in

bending *DH are expressed, respectively, as

XW4()DH&FDH = ‘H ~ CL% + DHCL
?

. . ..— ... .. . ---- ——-——-.——.--..——. _____ .——. . ________ . ___________ . ____ _
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TABLE I.- CONSTANTSUSED IN NUMERICALSOLUTIONS

[~o values of p were used: 223.9 and
470.7, qorresponcthgto altitudesof
8,OOO and 30,000feet, respectively]

Parameter

MI/MA. . . . . . .

( /)
-2kyc . . . . . .

M21MAE . . . . . .

M3/MA .. . . . . .

cLa. . . . . . . .

LJ
2&. . . . . ● .

%L
2 q . ● .. .“.

CLH. . . . . . . .

$LDH. . . . . . .
CLb . . . . . . .

e

Cma. . . . . . . .

kPmh. . . . . . .

&
2% “ . . . .. “

%H ”-....”.
~
2mDH. . . . “ . .
cm

se ‘“ .“ . . “

cFa.. . . . . . .

&FM . . . . . . .

kF
2 q . . .“. ..
CFH. . . . . . . .

$FDH. . . . . . .

cFbe . .’. . . . .

Values of parameterfor
center-of-gravitylocationsof -

o.25~

O.i375

1.762

-.01117

.07056

5.368

1.292

2.871_

.4482

.8021

.4010

-1.579

-4.624

-10.280

-1.604

-3.135

-1.865

.4412,

1.292

2.871

.4482

.8021

.4010

0.35E

0.1441

1.736
-.00377

.07718

5.368

1.256

2.298

.3797

.8062

.4010

-1.042

-4..370

-9.758

-1.612

-3.055

-1.813

.4453

1.256

2.790

.4610

.8062

.4010

0.45E

0.1510
1.710

.00376

.08433

5.368

1.220

1.725

.3021

.8193

.4010

-.5060

-4.123

-9.356

-1.639

-2.972

-I.762

.4584

1.220

2.707

.4741

.81g4

.4010

0.54M

0.1580
1.685

.0U48

.09180

5.368

1.186

1.185

.2197

.8416

.40:0

0

-3.896.

-9.082

J. 683

-2.888

-1.712

.4807

1.186

2.623

.4862

.841g

.4010

——.—. —... ----- .. . _____ _________
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Figure 6.- Variation of elevator angle necessary for balance-in straight
flight with fuselage natural frequency for a large airplane at several
airplane center-of-gravitylocations. Mach numiber,0.7; rigid-body
values at uf = m.
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